Data-driven identification and analysis of the glass transition in polymer melts

25 Nov 2022  ·  Atreyee Banerjee, Hsiao-Ping Hsu, Kurt Kremer, Oleksandra Kukharenko ·

Understanding the nature of glass transition, as well as precise estimation of the glass transition temperature for polymeric materials, remain open questions in both experimental and theoretical polymer sciences. We propose a data-driven approach, which utilizes the high-resolution details accessible through the molecular dynamics simulation and considers the structural information of individual chains. It clearly identifies the glass transition temperature of polymer melts of weakly semiflexible chains. By combining principal component analysis and clustering, we identify the glass transition temperature in the asymptotic limit even from relatively short-time trajectories, which just reach into the Rouse-like monomer displacement regime. We demonstrate that fluctuations captured by the principal component analysis reflect the change in a chain's behaviour: from conformational rearrangement above to small rearrangements below the glass transition temperature. Our approach is straightforward to apply, and should be applicable to other polymeric glass-forming liquids.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods