Data-Driven Evaluation of Training Action Space for Reinforcement Learning

8 Apr 2022  ·  Rajat Ghosh, Debojyoti Dutta ·

Training action space selection for reinforcement learning (RL) is conflict-prone due to complex state-action relationships. To address this challenge, this paper proposes a Shapley-inspired methodology for training action space categorization and ranking. To reduce exponential-time shapley computations, the methodology includes a Monte Carlo simulation to avoid unnecessary explorations. The effectiveness of the methodology is illustrated using a cloud infrastructure resource tuning case study. It reduces the search space by 80\% and categorizes the training action sets into dispensable and indispensable groups. Additionally, it ranks different training actions to facilitate high-performance yet cost-efficient RL model design. The proposed data-driven methodology is extensible to different domains, use cases, and reinforcement learning algorithms.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here