Data-driven Algorithm Selection and Parameter Tuning: Two Case studies in Optimization and Signal Processing

31 May 2019  ·  Jesus A. De Loera, Jamie Haddock, Anna Ma, Deanna Needell ·

Machine learning algorithms typically rely on optimization subroutines and are well-known to provide very effective outcomes for many types of problems. Here, we flip the reliance and ask the reverse question: can machine learning algorithms lead to more effective outcomes for optimization problems? Our goal is to train machine learning methods to automatically improve the performance of optimization and signal processing algorithms. As a proof of concept, we use our approach to improve two popular data processing subroutines in data science: stochastic gradient descent and greedy methods in compressed sensing. We provide experimental results that demonstrate the answer is ``yes'', machine learning algorithms do lead to more effective outcomes for optimization problems, and show the future potential for this research direction.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here