Data-Driven Affinely Adjustable Robust Volt/VAr Control

10 Sep 2022  ·  Naihao Shi, Rui Cheng, LiMing Liu, Zhaoyu Wang, Qianzhi Zhang ·

This paper proposes a data-driven affinely adjustable robust Volt/VAr control (AARVVC) scheme, which modulates the smart inverter reactive power in an affine function of its active power, based on the voltage sensitivities with respect to real/reactive power injections. To achieve a fast and accurate estimation of voltage sensitivities, we propose a data-driven method based on deep neural network (DNN), together with a rule-based bus-selection process using the bidirectional search method. Our method only uses the operating statuses of selected buses as inputs to DNN, thus significantly improving the training efficiency and reducing information redundancy. Finally, a distributed consensus-based solution, based on the alternating direction method of multipliers (ADMM), for the AARVVC is applied to decide the inverter reactive power adjustment rule with respect to its active power. Only limited information exchange is required between each local agent and the central agent to obtain the slope of the reactive power adjustment rule, and there is no need for the central agent to solve any (sub)optimization problems. Numerical results on the modified IEEE-123 bus system validate the effectiveness and superiority of the proposed data-driven AARVVC method.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here