CycleGAN, a Master of Steganography

8 Dec 2017 Casey Chu Andrey Zhmoginov Mark Sandler

CycleGAN (Zhu et al. 2017) is one recent successful approach to learn a transformation between two image distributions. In a series of experiments, we demonstrate an intriguing property of the model: CycleGAN learns to "hide" information about a source image into the images it generates in a nearly imperceptible, high-frequency signal... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
Batch Normalization
Normalization
Residual Connection
Skip Connections
PatchGAN
Discriminators
ReLU
Activation Functions
Tanh Activation
Activation Functions
Residual Block
Skip Connection Blocks
Instance Normalization
Normalization
Convolution
Convolutions
Leaky ReLU
Activation Functions
Sigmoid Activation
Activation Functions
GAN Least Squares Loss
Loss Functions
Cycle Consistency Loss
Loss Functions
CycleGAN
Generative Models