Curbing Task Interference using Representation Similarity-Guided Multi-Task Feature Sharing

19 Aug 2022  ·  Naresh Kumar Gurulingan, Elahe Arani, Bahram Zonooz ·

Multi-task learning of dense prediction tasks, by sharing both the encoder and decoder, as opposed to sharing only the encoder, provides an attractive front to increase both accuracy and computational efficiency. When the tasks are similar, sharing the decoder serves as an additional inductive bias providing more room for tasks to share complementary information among themselves. However, increased sharing exposes more parameters to task interference which likely hinders both generalization and robustness. Effective ways to curb this interference while exploiting the inductive bias of sharing the decoder remains an open challenge. To address this challenge, we propose Progressive Decoder Fusion (PDF) to progressively combine task decoders based on inter-task representation similarity. We show that this procedure leads to a multi-task network with better generalization to in-distribution and out-of-distribution data and improved robustness to adversarial attacks. Additionally, we observe that the predictions of different tasks of this multi-task network are more consistent with each other.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here