Cryo-RALib -- a modular library for accelerating alignment in cryo-EM

11 Nov 2020  ·  Szu-Chi Chung, Cheng-Yu Hung, Huei-Lun Siao, Hung-Yi Wu, Wei-Hau Chang, I-Ping Tu ·

Thanks to automated cryo-EM and GPU-accelerated processing, single-particle cryo-EM has become a rapid structure determination method that permits capture of dynamical structures of molecules in solution, which has been recently demonstrated by the determination of COVID-19 spike protein in March, shortly after its breakout in late January 2020. This rapidity is critical for vaccine development in response to emerging pandemic. This explains why a 2D classification approach based on multi-reference alignment (MRA) is not as popular as the Bayesian-based approach despite that the former has advantage in differentiating structural variations under low signal-to-noise ratio. This is perhaps because that MRA is a time-consuming process and a modular GPU-acceleration library for MRA is lacking. Here, we introduce a library called Cryo-RALib that expands the functionality of CUDA library used by GPU ISAC. It contains a GPU-accelerated MRA routine for accelerating MRA-based classification algorithms. In addition, we connect the cryo-EM image analysis with the python data science stack so as to make it easier for users to perform data analysis and visualization. Benchmarking on the TaiWan Computing Cloud (TWCC) container shows that our implementation can accelerate the computation by one order of magnitude. The library is available at https://github.com/phonchi/Cryo-RAlib.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here