Cross-Coupled Iterative Learning Control for Complex Systems: A Monotonically Convergent and Computationally Efficient Approach

Cross-coupled iterative learning control (ILC) can achieve high performance for manufacturing applications in which tracking a contour is essential for the quality of a product. The aim of this paper is to develop a framework for norm-optimal cross-coupled ILC that enables the use of exact contour errors that are calculated offline, and iteration- and time-varying weights. Conditions for the monotonic convergence of this iteration-varying ILC algorithm are developed. In addition, a resource-efficient implementation is proposed in which the ILC update law is reframed as a linear quadratic tracking problem, reducing the computational load significantly. The approach is illustrated on a simulation example.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here