Cost Sensitive Learning in the Presence of Symmetric Label Noise

8 Jan 2019  ·  Sandhya Tripathi, N. Hemachandra ·

In binary classification framework, we are interested in making cost sensitive label predictions in the presence of uniform/symmetric label noise. We first observe that $0$-$1$ Bayes classifiers are not (uniform) noise robust in cost sensitive setting. To circumvent this impossibility result, we present two schemes; unlike the existing methods, our schemes do not require noise rate. The first one uses $\alpha$-weighted $\gamma$-uneven margin squared loss function, $l_{\alpha, usq}$, which can handle cost sensitivity arising due to domain requirement (using user given $\alpha$) or class imbalance (by tuning $\gamma$) or both. However, we observe that $l_{\alpha, usq}$ Bayes classifiers are also not cost sensitive and noise robust. We show that regularized ERM of this loss function over the class of linear classifiers yields a cost sensitive uniform noise robust classifier as a solution of a system of linear equations. We also provide a performance bound for this classifier. The second scheme that we propose is a re-sampling based scheme that exploits the special structure of the uniform noise models and uses in-class probability $\eta$ estimates. Our computational experiments on some UCI datasets with class imbalance show that classifiers of our two schemes are on par with the existing methods and in fact better in some cases w.r.t. Accuracy and Arithmetic Mean, without using/tuning noise rate. We also consider other cost sensitive performance measures viz., F measure and Weighted Cost for evaluation. As our re-sampling scheme requires estimates of $\eta$, we provide a detailed comparative study of various $\eta$ estimation methods on synthetic datasets, w.r.t. half a dozen evaluation criterion. Also, we provide understanding on the interpretation of cost parameters $\alpha$ and $\gamma$ using different synthetic data experiments.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here