CoSam: An Efficient Collaborative Adaptive Sampler for Recommendation

16 Nov 2020  ·  Jiawei Chen, Chengquan Jiang, Can Wang, Sheng Zhou, Yan Feng, Chun Chen, Martin Ester, Xiangnan He ·

Sampling strategies have been widely applied in many recommendation systems to accelerate model learning from implicit feedback data. A typical strategy is to draw negative instances with uniform distribution, which however will severely affect model's convergency, stability, and even recommendation accuracy. A promising solution for this problem is to over-sample the ``difficult'' (a.k.a informative) instances that contribute more on training. But this will increase the risk of biasing the model and leading to non-optimal results. Moreover, existing samplers are either heuristic, which require domain knowledge and often fail to capture real ``difficult'' instances; or rely on a sampler model that suffers from low efficiency. To deal with these problems, we propose an efficient and effective collaborative sampling method CoSam, which consists of: (1) a collaborative sampler model that explicitly leverages user-item interaction information in sampling probability and exhibits good properties of normalization, adaption, interaction information awareness, and sampling efficiency; and (2) an integrated sampler-recommender framework, leveraging the sampler model in prediction to offset the bias caused by uneven sampling. Correspondingly, we derive a fast reinforced training algorithm of our framework to boost the sampler performance and sampler-recommender collaboration. Extensive experiments on four real-world datasets demonstrate the superiority of the proposed collaborative sampler model and integrated sampler-recommender framework.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here