COPOD: Copula-Based Outlier Detection

20 Sep 2020  ·  Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, Xiyang Hu ·

Outlier detection refers to the identification of rare items that are deviant from the general data distribution. Existing approaches suffer from high computational complexity, low predictive capability, and limited interpretability. As a remedy, we present a novel outlier detection algorithm called COPOD, which is inspired by copulas for modeling multivariate data distribution. COPOD first constructs an empirical copula, and then uses it to predict tail probabilities of each given data point to determine its level of "extremeness". Intuitively, we think of this as calculating an anomalous p-value. This makes COPOD both parameter-free, highly interpretable, and computationally efficient. In this work, we make three key contributions, 1) propose a novel, parameter-free outlier detection algorithm with both great performance and interpretability, 2) perform extensive experiments on 30 benchmark datasets to show that COPOD outperforms in most cases and is also one of the fastest algorithms, and 3) release an easy-to-use Python implementation for reproducibility.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here