Follower Agnostic Methods for Stackelberg Games

2 Feb 2023  ·  Chinmay Maheshwari, James Cheng, S. Shankar Sasty, Lillian Ratliff, Eric Mazumdar ·

In this paper, we present an efficient algorithm to solve online Stackelberg games, featuring multiple followers, in a follower-agnostic manner. Unlike previous works, our approach works even when leader has no knowledge about the followers' utility functions or strategy space. Our algorithm introduces a unique gradient estimator, leveraging specially designed strategies to probe followers. In a departure from traditional assumptions of optimal play, we model followers' responses using a convergent adaptation rule, allowing for realistic and dynamic interactions. The leader constructs the gradient estimator solely based on observations of followers' actions. We provide both non-asymptotic convergence rates to stationary points of the leader's objective and demonstrate asymptotic convergence to a \emph{local Stackelberg equilibrium}. To validate the effectiveness of our algorithm, we use this algorithm to solve the problem of incentive design on a large-scale transportation network, showcasing its robustness even when the leader lacks access to followers' demand.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here