Convergence of Nonconvex PnP-ADMM with MMSE Denoisers

30 Nov 2023  ·  Chicago Park, Shirin Shoushtari, Weijie Gan, Ulugbek S. Kamilov ·

Plug-and-Play Alternating Direction Method of Multipliers (PnP-ADMM) is a widely-used algorithm for solving inverse problems by integrating physical measurement models and convolutional neural network (CNN) priors. PnP-ADMM has been theoretically proven to converge for convex data-fidelity terms and nonexpansive CNNs. It has however been observed that PnP-ADMM often empirically converges even for expansive CNNs. This paper presents a theoretical explanation for the observed stability of PnP-ADMM based on the interpretation of the CNN prior as a minimum mean-squared error (MMSE) denoiser. Our explanation parallels a similar argument recently made for the iterative shrinkage/thresholding algorithm variant of PnP (PnP-ISTA) and relies on the connection between MMSE denoisers and proximal operators. We also numerically evaluate the performance gap between PnP-ADMM using a nonexpansive DnCNN denoiser and expansive DRUNet denoiser, thus motivating the use of expansive CNNs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods