Convergence of denoising diffusion models under the manifold hypothesis

10 Aug 2022  ·  Valentin De Bortoli ·

Denoising diffusion models are a recent class of generative models exhibiting state-of-the-art performance in image and audio synthesis. Such models approximate the time-reversal of a forward noising process from a target distribution to a reference density, which is usually Gaussian. Despite their strong empirical results, the theoretical analysis of such models remains limited. In particular, all current approaches crucially assume that the target density admits a density w.r.t. the Lebesgue measure. This does not cover settings where the target distribution is supported on a lower-dimensional manifold or is given by some empirical distribution. In this paper, we bridge this gap by providing the first convergence results for diffusion models in this more general setting. In particular, we provide quantitative bounds on the Wasserstein distance of order one between the target data distribution and the generative distribution of the diffusion model.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods