Controlling the Solo12 Quadruped Robot with Deep Reinforcement Learning

Quadruped robots require robust and general locomotion skills to exploit their mobility potential in complex and challenging environments. In this work, we present the first implementation of a robust end-to-end learning-based controller on the Solo12 quadruped. Our method is based on deep reinforcement learning of joint impedance references. The resulting control policies follow a commanded velocity reference while being efficient in its energy consumption, robust and easy to deploy. We detail the learning procedure and method for transfer on the real robot. In our experiments, we show that the Solo12 robot is a suitable open-source platform for research combining learning and control because of the easiness in transferring and deploying learned controllers.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here