Controlling Continuous Relaxation for Combinatorial Optimization

29 Sep 2023  ·  Yuma Ichikawa ·

Unsupervised learning (UL)-based solvers for combinatorial optimization (CO) train a neural network whose output provides a soft solution by directly optimizing the CO objective using a continuous relaxation strategy. These solvers offer several advantages over traditional methods and other learning-based methods, particularly for large-scale CO problems. However, UL-based solvers face two practical issues: (I) an optimization issue where UL-based solvers are easily trapped at local optima, and (II) a rounding issue where UL-based solvers require artificial post-learning rounding from the continuous space back to the original discrete space, undermining the robustness of the results. This study proposes a Continuous Relaxation Annealing (CRA) strategy, an effective rounding-free learning method for UL-based solvers. CRA introduces a penalty term that dynamically shifts from prioritizing continuous solutions, effectively smoothing the non-convexity of the objective function, to enforcing discreteness, eliminating the artificial rounding. Experimental results demonstrate that CRA significantly enhances the performance of UL-based solvers, outperforming existing UL-based solvers and greedy algorithms in complex CO problems. It also effectively eliminates the artificial rounding and accelerates the learning.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here