Continuous Object State Recognition for Cooking Robots Using Pre-Trained Vision-Language Models and Black-box Optimization

13 Mar 2024  ·  Kento Kawaharazuka, Naoaki Kanazawa, Yoshiki Obinata, Kei Okada, Masayuki Inaba ·

The state recognition of the environment and objects by robots is generally based on the judgement of the current state as a classification problem. On the other hand, state changes of food in cooking happen continuously and need to be captured not only at a certain time point but also continuously over time. In addition, the state changes of food are complex and cannot be easily described by manual programming. Therefore, we propose a method to recognize the continuous state changes of food for cooking robots through the spoken language using pre-trained large-scale vision-language models. By using models that can compute the similarity between images and texts continuously over time, we can capture the state changes of food while cooking. We also show that by adjusting the weighting of each text prompt based on fitting the similarity changes to a sigmoid function and then performing black-box optimization, more accurate and robust continuous state recognition can be achieved. We demonstrate the effectiveness and limitations of this method by performing the recognition of water boiling, butter melting, egg cooking, and onion stir-frying.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here