Continuous-fidelity Bayesian Optimization with Knowledge Gradient

While Bayesian optimization (BO) has achieved great success in optimizing expensive-to-evaluate black-box functions, especially tuning hyperparameters of neural networks, methods such as random search (Li et al., 2016) and multi-fidelity BO (e.g. Klein et al. (2017)) that exploit cheap approximations, e.g. training on a smaller training data or with fewer iterations, can outperform standard BO approaches that use only full-fidelity observations. In this paper, we propose a novel Bayesian optimization algorithm, the continuous-fidelity knowledge gradient (cfKG) method, that can be used when fidelity is controlled by one or more continuous settings such as training data size and the number of training iterations... (read more)

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

Random Search
Hyperparameter Search