Confidence-Based Model Selection: When to Take Shortcuts for Subpopulation Shifts

19 Jun 2023  ·  Annie S. Chen, Yoonho Lee, Amrith Setlur, Sergey Levine, Chelsea Finn ·

Effective machine learning models learn both robust features that directly determine the outcome of interest (e.g., an object with wheels is more likely to be a car), and shortcut features (e.g., an object on a road is more likely to be a car). The latter can be a source of error under distributional shift, when the correlations change at test-time. The prevailing sentiment in the robustness literature is to avoid such correlative shortcut features and learn robust predictors. However, while robust predictors perform better on worst-case distributional shifts, they often sacrifice accuracy on majority subpopulations. In this paper, we argue that shortcut features should not be entirely discarded. Instead, if we can identify the subpopulation to which an input belongs, we can adaptively choose among models with different strengths to achieve high performance on both majority and minority subpopulations. We propose COnfidence-baSed MOdel Selection (CosMoS), where we observe that model confidence can effectively guide model selection. Notably, CosMoS does not require any target labels or group annotations, either of which may be difficult to obtain or unavailable. We evaluate CosMoS on four datasets with spurious correlations, each with multiple test sets with varying levels of data distribution shift. We find that CosMoS achieves 2-5% lower average regret across all subpopulations, compared to using only robust predictors or other model aggregation methods.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here