Conditional Mutual Information-Based Generalization Bound for Meta Learning

21 Oct 2020  ·  Arezou Rezazadeh, Sharu Theresa Jose, Giuseppe Durisi, Osvaldo Simeone ·

Meta-learning optimizes an inductive bias---typically in the form of the hyperparameters of a base-learning algorithm---by observing data from a finite number of related tasks. This paper presents an information-theoretic bound on the generalization performance of any given meta-learner, which builds on the conditional mutual information (CMI) framework of Steinke and Zakynthinou (2020). In the proposed extension to meta-learning, the CMI bound involves a training \textit{meta-supersample} obtained by first sampling $2N$ independent tasks from the task environment, and then drawing $2M$ independent training samples for each sampled task. The meta-training data fed to the meta-learner is modelled as being obtained by randomly selecting $N$ tasks from the available $2N$ tasks and $M$ training samples per task from the available $2M$ training samples per task. The resulting bound is explicit in two CMI terms, which measure the information that the meta-learner output and the base-learner output provide about which training data are selected, given the entire meta-supersample. Finally, we present a numerical example that illustrates the merits of the proposed bound in comparison to prior information-theoretic bounds for meta-learning.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here