Conditional Gradient Method for Stochastic Submodular Maximization: Closing the Gap

5 Nov 2017  ·  Aryan Mokhtari, Hamed Hassani, Amin Karbasi ·

In this paper, we study the problem of \textit{constrained} and \textit{stochastic} continuous submodular maximization. Even though the objective function is not concave (nor convex) and is defined in terms of an expectation, we develop a variant of the conditional gradient method, called \alg, which achieves a \textit{tight} approximation guarantee. More precisely, for a monotone and continuous DR-submodular function and subject to a \textit{general} convex body constraint, we prove that \alg achieves a $[(1-1/e)\text{OPT} -\eps]$ guarantee (in expectation) with $\mathcal{O}{(1/\eps^3)}$ stochastic gradient computations. This guarantee matches the known hardness results and closes the gap between deterministic and stochastic continuous submodular maximization. By using stochastic continuous optimization as an interface, we also provide the first $(1-1/e)$ tight approximation guarantee for maximizing a \textit{monotone but stochastic} submodular \textit{set} function subject to a general matroid constraint.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here