Conditional generation of molecules from disentangled representations

25 Sep 2019  ·  Amina Mollaysa, Brooks Paige, Alexandros Kalousis ·

Though machine learning approaches have shown great success in estimating properties of small molecules, the inverse problem of generating molecules with desired properties remains challenging. This difficulty is in part because the set of molecules which have a given property is structurally very diverse. Treating this inverse problem as a conditional distribution estimation task, we draw upon work in learning disentangled representations to learn a conditional distribution over molecules given a desired property, where the molecular structure is encoded in a continuous latent random variable. By including property information as an input factor independent from the structure representation, one can perform conditional molecule generation via a ``style transfer'' process, in which we explicitly set the property to a desired value at generation time. In contrast to existing approaches, we disentangle the latent factors from the property factors using a regularization term which constrains the generated molecules to have the property provided to the generation network, no matter how the latent factor changes.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here