Computationally-Efficient Synchrophasor Estimation: Delayed in-quadrature Interpolated DFT

15 Apr 2023  ·  César García Veloso, Mario Paolone, José María Maza Ortega ·

The paper proposes a synchropahsor estimation (SE) algorithm that leverages the use of a delayed in-quadrature complex signal to mitigate the self-interference of the fundamental tone. The estimator, which uses a three-point IpDFT combined with a three-cycle Hanning window, incorporates a new detection mechanism to iteratively estimate and remove the effects caused by interfering tones within the out-of-band interference (OOBI) range. The main feature of the method is its ability to detect interfering tones with an amplitude lower than that adopted by the IEC/IEEE Std. 60255-118, this detection being notably challenging. Furthermore, it simultaneously satisfies all the accuracy requirements for the P and M phasor measurement unit (PMU) performance classes, while offering a reduction in the total computational cost compared to other state-of-the-art techniques. Despite an increase in total memory requirements, a preliminary analysis reveals its suitability for implementation on embedded devices.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here