Computational and Statistical Tradeoffs in Learning to Rank

NeurIPS 2016  ·  Ashish Khetan, Sewoong Oh ·

For massive and heterogeneous modern datasets, it is of fundamental interest to provide guarantees on the accuracy of estimation when computational resources are limited. In the application of learning to rank, we provide a hierarchy of rank-breaking mechanisms ordered by the complexity in thus generated sketch of the data. This allows the number of data points collected to be gracefully traded off against computational resources available, while guaranteeing the desired level of accuracy. Theoretical guarantees on the proposed generalized rank-breaking implicitly provide such trade-offs, which can be explicitly characterized under certain canonical scenarios on the structure of the data.

PDF Abstract NeurIPS 2016 PDF NeurIPS 2016 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here