Compressing physical properties of atomic species for improving predictive chemistry

31 Oct 2018  ·  John E. Herr, Kevin Koh, Kun Yao, John Parkhill ·

The answers to many unsolved problems lie in the intractable chemical space of molecules and materials. Machine learning techniques are rapidly growing in popularity as a way to compress and explore chemical space efficiently. One of the most important aspects of machine learning techniques is representation through the feature vector, which should contain the most important descriptors necessary to make accurate predictions, not least of which is the atomic species in the molecule or material. In this work we introduce a compressed representation of physical properties for atomic species we call the elemental modes. The elemental modes provide an excellent representation by capturing many of the nuances of the periodic table and the similarity of atomic species. We apply the elemental modes to several different tasks for machine learning algorithms and show that they enable us to make improvements to these tasks even beyond simply achieving higher accuracy predictions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here