Complementarity-constrained predictive control for efficient gas-balanced hybrid power systems

10 Apr 2024  ·  Kiet Tuan Hoang, Brage Rugstad Knudsen, Lars Struen Imsland ·

Controlling gas turbines (GTs) efficiently is vital as GTs are used to balance power in onshore/offshore hybrid power systems with variable renewable energy and energy storage. However, predictive control of GTs is non-trivial when formulated as a dynamic optimisation problem due to the semi-continuous operating regions of GTs, which must be included to ensure complete combustion and high fuel efficiency. This paper studies two approaches for handling the semi-continuous operating regions of GTs in hybrid power systems through predictive control, dynamic optimisation, and complementarity constraints. The proposed solutions are qualitatively investigated and compared with baseline controllers in a case study involving GTs, offshore wind, and batteries. While one of the baseline controllers considers fuel efficiency, it employs a continuous formulation, which results in lower efficiency than the two proposed approaches as it does not account for the semi-continuous operating regions of each GT.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods