Comparing Comparators in Generalization Bounds

16 Oct 2023  ·  Fredrik Hellström, Benjamin Guedj ·

We derive generic information-theoretic and PAC-Bayesian generalization bounds involving an arbitrary convex comparator function, which measures the discrepancy between the training and population loss. The bounds hold under the assumption that the cumulant-generating function (CGF) of the comparator is upper-bounded by the corresponding CGF within a family of bounding distributions. We show that the tightest possible bound is obtained with the comparator being the convex conjugate of the CGF of the bounding distribution, also known as the Cram\'er function. This conclusion applies more broadly to generalization bounds with a similar structure. This confirms the near-optimality of known bounds for bounded and sub-Gaussian losses and leads to novel bounds under other bounding distributions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here