Communication-Efficient Federated Hypergradient Computation via Aggregated Iterative Differentiation

9 Feb 2023  ·  Peiyao Xiao, Kaiyi Ji ·

Federated bilevel optimization has attracted increasing attention due to emerging machine learning and communication applications. The biggest challenge lies in computing the gradient of the upper-level objective function (i.e., hypergradient) in the federated setting due to the nonlinear and distributed construction of a series of global Hessian matrices. In this paper, we propose a novel communication-efficient federated hypergradient estimator via aggregated iterative differentiation (AggITD). AggITD is simple to implement and significantly reduces the communication cost by conducting the federated hypergradient estimation and the lower-level optimization simultaneously. We show that the proposed AggITD-based algorithm achieves the same sample complexity as existing approximate implicit differentiation (AID)-based approaches with much fewer communication rounds in the presence of data heterogeneity. Our results also shed light on the great advantage of ITD over AID in the federated/distributed hypergradient estimation. This differs from the comparison in the non-distributed bilevel optimization, where ITD is less efficient than AID. Our extensive experiments demonstrate the great effectiveness and communication efficiency of the proposed method.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here