An Optimal Algorithm for the Real-Valued Combinatorial Pure Exploration of Multi-Armed Bandit

15 Jun 2023  ·  Shintaro Nakamura, Masashi Sugiyama ·

We study the real-valued combinatorial pure exploration problem in the stochastic multi-armed bandit (R-CPE-MAB). We study the case where the size of the action set is polynomial with respect to the number of arms. In such a case, the R-CPE-MAB can be seen as a special case of the so-called transductive linear bandits. Existing methods in the R-CPE-MAB and transductive linear bandits have a gap of problem-dependent constant terms and logarithmic terms between the upper and lower bounds of the sample complexity, respectively. We close these gaps by proposing an algorithm named the combinatorial gap-based exploration (CombGapE) algorithm, whose sample complexity upper bound matches the lower bound. Finally, we numerically show that the CombGapE algorithm outperforms existing methods significantly.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods