Combating Confirmation Bias: A Unified Pseudo-Labeling Framework for Entity Alignment

5 Jul 2023  ·  Qijie Ding, Jie Yin, Daokun Zhang, Junbin Gao ·

Entity alignment (EA) aims at identifying equivalent entity pairs across different knowledge graphs (KGs) that refer to the same real-world identity. To systematically combat confirmation bias for pseudo-labeling-based entity alignment, we propose a Unified Pseudo-Labeling framework for Entity Alignment (UPL-EA) that explicitly eliminates pseudo-labeling errors to boost the accuracy of entity alignment. UPL-EA consists of two complementary components: (1) The Optimal Transport (OT)-based pseudo-labeling uses discrete OT modeling as an effective means to enable more accurate determination of entity correspondences across two KGs and to mitigate the adverse impact of erroneous matches. A simple but highly effective criterion is further devised to derive pseudo-labeled entity pairs that satisfy one-to-one correspondences at each iteration. (2) The cross-iteration pseudo-label calibration operates across multiple consecutive iterations to further improve the pseudo-labeling precision rate by reducing the local pseudo-label selection variability with a theoretical guarantee. The two components are respectively designed to eliminate Type I and Type II pseudo-labeling errors identified through our analyse. The calibrated pseudo-labels are thereafter used to augment prior alignment seeds to reinforce subsequent model training for alignment inference. The effectiveness of UPL-EA in eliminating pseudo-labeling errors is both theoretically supported and experimentally validated. The experimental results show that our approach achieves competitive performance with limited prior alignment seeds.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here