Cognitive Radio Network Throughput Maximization with Deep Reinforcement Learning

7 Jul 2020  ·  Kevin Shen Hoong Ong, Yang Zhang, Dusit Niyato ·

Radio Frequency powered Cognitive Radio Networks (RF-CRN) are likely to be the eyes and ears of upcoming modern networks such as Internet of Things (IoT), requiring increased decentralization and autonomous operation. To be considered autonomous, the RF-powered network entities need to make decisions locally to maximize the network throughput under the uncertainty of any network environment. However, in complex and large-scale networks, the state and action spaces are usually large, and existing Tabular Reinforcement Learning technique is unable to find the optimal state-action policy quickly. In this paper, deep reinforcement learning is proposed to overcome the mentioned shortcomings and allow a wireless gateway to derive an optimal policy to maximize network throughput. When benchmarked against advanced DQN techniques, our proposed DQN configuration offers performance speedup of up to 1.8x with good overall performance.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods