Co-Optimization of On-Ramp Merging and Plug-In Hybrid Electric Vehicle Power Split Using Deep Reinforcement Learning

7 Mar 2022  ·  Yuan Lin, John McPhee, Nasser L. Azad ·

Current research on Deep Reinforcement Learning (DRL) for automated on-ramp merging neglects vehicle powertrain and dynamics. This work considers automated on-ramp merging for a power-split Plug-In Hybrid Electric Vehicle (PHEV), the 2015 Toyota Prius Plug-In, using DRL. The on-ramp merging control and the PHEV energy management are co-optimized such that the DRL policy directly outputs the power split between the engine and the electric motor. The testing results show that DRL can be successfully used for co-optimization, leading to collision-free on-ramp merging. When compared with sequential approaches wherein the upper-level on-ramp merging control and the lower-level PHEV energy management are performed independently and in sequence, we found that co-optimization results in economic but jerky on-ramp merging while sequential approaches may result in collisions due to neglecting powertrain power limit constraints in designing the upper-level on-ramp merging controller.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods