Co-Optimization of Environment and Policies for Decentralized Multi-Agent Navigation

21 Mar 2024  ·  Zhan Gao, Guang Yang, Amanda Prorok ·

This work views the multi-agent system and its surrounding environment as a co-evolving system, where the behavior of one affects the other. The goal is to take both agent actions and environment configurations as decision variables, and optimize these two components in a coordinated manner to improve some measure of interest. Towards this end, we consider the problem of decentralized multi-agent navigation in cluttered environments. By introducing two sub-objectives of multi-agent navigation and environment optimization, we propose an $\textit{agent-environment co-optimization}$ problem and develop a $\textit{coordinated algorithm}$ that alternates between these sub-objectives to search for an optimal synthesis of agent actions and obstacle configurations in the environment; ultimately, improving the navigation performance. Due to the challenge of explicitly modeling the relation between agents, environment and performance, we leverage policy gradient to formulate a model-free learning mechanism within the coordinated framework. A formal convergence analysis shows that our coordinated algorithm tracks the local minimum trajectory of an associated time-varying non-convex optimization problem. Extensive numerical results corroborate theoretical findings and show the benefits of co-optimization over baselines. Interestingly, the results also indicate that optimized environment configurations are able to offer structural guidance that is key to de-conflicting agents in motion.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here