Clustering Molecular Energy Landscapes by Adaptive Network Embedding

19 Jan 2024  ·  Paula Mercurio, Di Liu ·

In order to efficiently explore the chemical space of all possible small molecules, a common approach is to compress the dimension of the system to facilitate downstream machine learning tasks. Towards this end, we present a data driven approach for clustering potential energy landscapes of molecular structures by applying recently developed Network Embedding techniques, to obtain latent variables defined through the embedding function. To scale up the method, we also incorporate an entropy sensitive adaptive scheme for hierarchical sampling of the energy landscape, based on Metadynamics and Transition Path Theory. By taking into account the kinetic information implied by a system's energy landscape, we are able to interpret dynamical node-node relationships in reduced dimensions. We demonstrate the framework through Lennard-Jones (LJ) clusters and a human DNA sequence.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here