"Closed Proportional-Integral-Derivative-Loop Model" Following Control

30 May 2020  ·  Oluwasegun Ayokunle Somefun, Kayode Akingbade, Folasade Dahunsi ·

The proportional-integral-derivative (PID) control law is often overlooked as a computational imitation of the critic control in human decision. This paper provides a formulation to remedy this problem. Further, based on the characteristic settling-behaviour of dynamical systems, the "closed PID-loop model" following control (CPLMFC) method is introduced for automatic PID design. Also, a method for closed-loop settling-time identification is provided. The CPLMFC algorithm and some recommended guidelines are given for setting the critic weights of the PID. Finally, two representative case-studies are simulated. Both the theoretical results and simulation results (via performance indices) illustrate that the CPLMFC can guarantee both accurate and stable closed-loop adaptive PID control performance in real-time

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here