Clinical Patient Tracking in the Presence of Transient and Permanent Occlusions via Geodesic Feature

22 Jul 2017  ·  Kun Li, Joel W. Burdick ·

This paper develops a method to use RGB-D cameras to track the motions of a human spinal cord injury patient undergoing spinal stimulation and physical rehabilitation. Because clinicians must remain close to the patient during training sessions, the patient is usually under permanent and transient occlusions due to the training equipment and the movements of the attending clinicians. These occlusions can significantly degrade the accuracy of existing human tracking methods. To improve the data association problem in these circumstances, we present a new global feature based on the geodesic distances of surface mesh points to a set of anchor points. Transient occlusions are handled via a multi-hypothesis tracking framework. To evaluate the method, we simulated different occlusion sizes on a data set captured from a human in varying movement patterns, and compared the proposed feature with other tracking methods. The results show that the proposed method achieves robustness to both surface deformations and transient occlusions.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here