clcNet: Improving the Efficiency of Convolutional Neural Network using Channel Local Convolutions

CVPR 2018  ·  Dong-Qing Zhang ·

Depthwise convolution and grouped convolution has been successfully applied to improve the efficiency of convolutional neural network (CNN). We suggest that these models can be considered as special cases of a generalized convolution operation, named channel local convolution(CLC), where an output channel is computed using a subset of the input channels. This definition entails computation dependency relations between input and output channels, which can be represented by a channel dependency graph(CDG). By modifying the CDG of grouped convolution, a new CLC kernel named interlaced grouped convolution (IGC) is created. Stacking IGC and GC kernels results in a convolution block (named CLC Block) for approximating regular convolution. By resorting to the CDG as an analysis tool, we derive the rule for setting the meta-parameters of IGC and GC and the framework for minimizing the computational cost. A new CNN model named clcNet is then constructed using CLC blocks, which shows significantly higher computational efficiency and fewer parameters compared to state-of-the-art networks, when being tested using the ImageNet-1K dataset. Source code is available at https://github.com/dqzhang17/clcnet.torch .

PDF Abstract CVPR 2018 PDF CVPR 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods