CIRP: Cross-Item Relational Pre-training for Multimodal Product Bundling

2 Apr 2024  ·  Yunshan Ma, Yingzhi He, Wenjun Zhong, Xiang Wang, Roger Zimmermann, Tat-Seng Chua ·

Product bundling has been a prevailing marketing strategy that is beneficial in the online shopping scenario. Effective product bundling methods depend on high-quality item representations, which need to capture both the individual items' semantics and cross-item relations. However, previous item representation learning methods, either feature fusion or graph learning, suffer from inadequate cross-modal alignment and struggle to capture the cross-item relations for cold-start items. Multimodal pre-train models could be the potential solutions given their promising performance on various multimodal downstream tasks. However, the cross-item relations have been under-explored in the current multimodal pre-train models. To bridge this gap, we propose a novel and simple framework Cross-Item Relational Pre-training (CIRP) for item representation learning in product bundling. Specifically, we employ a multimodal encoder to generate image and text representations. Then we leverage both the cross-item contrastive loss (CIC) and individual item's image-text contrastive loss (ITC) as the pre-train objectives. Our method seeks to integrate cross-item relation modeling capability into the multimodal encoder, while preserving the in-depth aligned multimodal semantics. Therefore, even for cold-start items that have no relations, their representations are still relation-aware. Furthermore, to eliminate the potential noise and reduce the computational cost, we harness a relation pruning module to remove the noisy and redundant relations. We apply the item representations extracted by CIRP to the product bundling model ItemKNN, and experiments on three e-commerce datasets demonstrate that CIRP outperforms various leading representation learning methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods