Cinematic-L1 Video Stabilization with a Log-Homography Model

16 Nov 2020  ·  Arwen Bradley, Jason Klivington, Joseph Triscari, Rudolph van der Merwe ·

We present a method for stabilizing handheld video that simulates the camera motions cinematographers achieve with equipment like tripods, dollies, and Steadicams. We formulate a constrained convex optimization problem minimizing the $\ell_1$-norm of the first three derivatives of the stabilized motion. Our approach extends the work of Grundmann et al. [9] by solving with full homographies (rather than affinities) in order to correct perspective, preserving linearity by working in log-homography space. We also construct crop constraints that preserve field-of-view; model the problem as a quadratic (rather than linear) program to allow for an $\ell_2$ term encouraging fidelity to the original trajectory; and add constraints and objectives to reduce distortion. Furthermore, we propose new methods for handling salient objects via both inclusion constraints and centering objectives. Finally, we describe a windowing strategy to approximate the solution in linear time and bounded memory. Our method is computationally efficient, running at 300fps on an iPhone XS, and yields high-quality results, as we demonstrate with a collection of stabilized videos, quantitative and qualitative comparisons to [9] and other methods, and an ablation study.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here