Choosing Public Datasets for Private Machine Learning via Gradient Subspace Distance

2 Mar 2023  ·  Xin Gu, Gautam Kamath, Zhiwei Steven Wu ·

Differentially private stochastic gradient descent privatizes model training by injecting noise into each iteration, where the noise magnitude increases with the number of model parameters. Recent works suggest that we can reduce the noise by leveraging public data for private machine learning, by projecting gradients onto a subspace prescribed by the public data. However, given a choice of public datasets, it is not a priori clear which one may be most appropriate for the private task. We give an algorithm for selecting a public dataset by measuring a low-dimensional subspace distance between gradients of the public and private examples. We provide theoretical analysis demonstrating that the excess risk scales with this subspace distance. This distance is easy to compute and robust to modifications in the setting. Empirical evaluation shows that trained model accuracy is monotone in this distance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here