PAD-Net: An Efficient Framework for Dynamic Networks

10 Nov 2022  ·  Shwai He, Liang Ding, Daize Dong, Boan Liu, Fuqiang Yu, DaCheng Tao ·

Dynamic networks, e.g., Dynamic Convolution (DY-Conv) and the Mixture of Experts (MoE), have been extensively explored as they can considerably improve the model's representation power with acceptable computational cost. The common practice in implementing dynamic networks is to convert the given static layers into fully dynamic ones where all parameters are dynamic (at least within a single layer) and vary with the input. However, such a fully dynamic setting may cause redundant parameters and high deployment costs, limiting the applicability of dynamic networks to a broader range of tasks and models. The main contributions of our work are challenging the basic commonsense in dynamic networks and proposing a partially dynamic network, namely PAD-Net, to transform the redundant dynamic parameters into static ones. Also, we further design Iterative Mode Partition to partition dynamic and static parameters efficiently. Our method is comprehensively supported by large-scale experiments with two typical advanced dynamic architectures, i.e., DY-Conv and MoE, on both image classification and GLUE benchmarks. Encouragingly, we surpass the fully dynamic networks by $+0.7\%$ top-1 acc with only $30\%$ dynamic parameters for ResNet-50 and $+1.9\%$ average score in language understanding with only $50\%$ dynamic parameters for BERT. Code will be released at: \url{https://github.com/Shwai-He/PAD-Net}.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods