Paper

CHEETAH: An Ultra-Fast, Approximation-Free, and Privacy-Preserved Neural Network Framework based on Joint Obscure Linear and Nonlinear Computations

Machine Learning as a Service (MLaaS) is enabling a wide range of smart applications on end devices. However, such convenience comes with a cost of privacy because users have to upload their private data to the cloud. This research aims to provide effective and efficient MLaaS such that the cloud server learns nothing about user data and the users cannot infer the proprietary model parameters owned by the server. This work makes the following contributions. First, it unveils the fundamental performance bottleneck of existing schemes due to the heavy permutations in computing linear transformation and the use of communication intensive Garbled Circuits for nonlinear transformation. Second, it introduces an ultra-fast secure MLaaS framework, CHEETAH, which features a carefully crafted secret sharing scheme that runs significantly faster than existing schemes without accuracy loss. Third, CHEETAH is evaluated on the benchmark of well-known, practical deep networks such as AlexNet and VGG-16 on the MNIST and ImageNet datasets. The results demonstrate more than 100x speedup over the fastest GAZELLE (Usenix Security'18), 2000x speedup over MiniONN (ACM CCS'17) and five orders of magnitude speedup over CryptoNets (ICML'16). This significant speedup enables a wide range of practical applications based on privacy-preserved deep neural networks.

Results in Papers With Code
(↓ scroll down to see all results)