Charting and navigating the space of solutions for recurrent neural networks

NeurIPS 2021  ·  Elia Turner, Kabir Dabholkar, Omri Barak ·

Recurrent Neural Networks (RNNs) were recently successfully used to model the way neural activity drives task-related behavior in animals, operating under the implicit assumption that the obtained solutions are universal. Observations in both neuroscience and machine learning challenge this assumption. Animals can approach a given task with a variety of strategies, and training machine learning algorithms introduces the phenomenon of underspecification. These observations imply that every task is associated with a space of solutions. To date, the structure of this space is not understood, limiting the approach of comparing RNNs with neural data. Here, we characterize the space of solutions associated with various tasks. We first study a simple two-neuron network on a task that leads to multiple solutions. We trace the nature of the final solution back to the network's initial connectivity and identify discrete dynamical regimes that underlie this diversity. We then examine three neuroscience-inspired tasks: Delayed and interval discrimination, and Time reproduction. For each task, we find a rich set of solutions. Variability can be found directly in the neural activity of the networks, and additionally by testing the trained networks' ability to extrapolate, as a perturbation to a system often reveals hidden structure. Furthermore, we relate extrapolation patterns to specific dynamical objects and effective algorithms found by the networks. We introduce a tool to derive the reduced dynamics of networks by generating a compact directed graph describing the essence of the dynamics with regards to behavioral inputs and outputs. Using this representation, we can partition the solutions to each task into a handful of types and partially predict them from neural features. Our results shed light on the concept of the space of solutions and its uses in Machine learning and in Neuroscience.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here