Chain of History: Learning and Forecasting with LLMs for Temporal Knowledge Graph Completion

11 Jan 2024  ·  Ruilin Luo, Tianle Gu, Haoling Li, Junzhe Li, Zicheng Lin, Jiayi Li, Yujiu Yang ·

Temporal Knowledge Graph Completion (TKGC) is a complex task involving the prediction of missing event links at future timestamps by leveraging established temporal structural knowledge. This paper aims to provide a comprehensive perspective on harnessing the advantages of Large Language Models (LLMs) for reasoning in temporal knowledge graphs, presenting an easily transferable pipeline. In terms of graph modality, we underscore the LLMs' prowess in discerning the structural information of pivotal nodes within the historical chain. As for the generation mode of the LLMs utilized for inference, we conduct an exhaustive exploration into the variances induced by a range of inherent factors in LLMs, with particular attention to the challenges in comprehending reverse logic. We adopt a parameter-efficient fine-tuning strategy to harmonize the LLMs with the task requirements, facilitating the learning of the key knowledge highlighted earlier. Comprehensive experiments are undertaken on several widely recognized datasets, revealing that our framework exceeds or parallels existing methods across numerous popular metrics. Additionally, we execute a substantial range of ablation experiments and draw comparisons with several advanced commercial LLMs, to investigate the crucial factors influencing LLMs' performance in structured temporal knowledge inference tasks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here