Certified Multi-Fidelity Zeroth-Order Optimization

2 Aug 2023  ·  Étienne de Montbrun, Sébastien Gerchinovitz ·

We consider the problem of multi-fidelity zeroth-order optimization, where one can evaluate a function $f$ at various approximation levels (of varying costs), and the goal is to optimize $f$ with the cheapest evaluations possible. In this paper, we study \emph{certified} algorithms, which are additionally required to output a data-driven upper bound on the optimization error. We first formalize the problem in terms of a min-max game between an algorithm and an evaluation environment. We then propose a certified variant of the MFDOO algorithm and derive a bound on its cost complexity for any Lipschitz function $f$. We also prove an $f$-dependent lower bound showing that this algorithm has a near-optimal cost complexity. We close the paper by addressing the special case of noisy (stochastic) evaluations as a direct example.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here