Centralized Model and Exploration Policy for Multi-Agent RL

14 Jul 2021  ·  Qizhen Zhang, Chris Lu, Animesh Garg, Jakob Foerster ·

Reinforcement learning (RL) in partially observable, fully cooperative multi-agent settings (Dec-POMDPs) can in principle be used to address many real-world challenges such as controlling a swarm of rescue robots or a team of quadcopters. However, Dec-POMDPs are significantly harder to solve than single-agent problems, with the former being NEXP-complete and the latter, MDPs, being just P-complete. Hence, current RL algorithms for Dec-POMDPs suffer from poor sample complexity, which greatly reduces their applicability to practical problems where environment interaction is costly. Our key insight is that using just a polynomial number of samples, one can learn a centralized model that generalizes across different policies. We can then optimize the policy within the learned model instead of the true system, without requiring additional environment interactions. We also learn a centralized exploration policy within our model that learns to collect additional data in state-action regions with high model uncertainty. We empirically evaluate the proposed model-based algorithm, MARCO, in three cooperative communication tasks, where it improves sample efficiency by up to 20x. Finally, to investigate the theoretical sample complexity, we adapt an existing model-based method for tabular MDPs to Dec-POMDPs, and prove that it achieves polynomial sample complexity.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here