Causal Rule Sets for Identifying Subgroups with Enhanced Treatment Effect

16 Oct 2017  ·  Tong Wang, Cynthia Rudin ·

A key question in causal inference analyses is how to find subgroups with elevated treatment effects. This paper takes a machine learning approach and introduces a generative model, Causal Rule Sets (CRS), for interpretable subgroup discovery. A CRS model uses a small set of short decision rules to capture a subgroup where the average treatment effect is elevated. We present a Bayesian framework for learning a causal rule set. The Bayesian model consists of a prior that favors simple models for better interpretability as well as avoiding overfitting, and a Bayesian logistic regression that captures the likelihood of data, characterizing the relation between outcomes, attributes, and subgroup membership. The Bayesian model has tunable parameters that can characterize subgroups with various sizes, providing users with more flexible choices of models from the \emph{treatment efficient frontier}. We find maximum a posteriori models using iterative discrete Monte Carlo steps in the joint solution space of rules sets and parameters. To improve search efficiency, we provide theoretically grounded heuristics and bounding strategies to prune and confine the search space. Experiments show that the search algorithm can efficiently recover true underlying subgroups. We apply CRS on public and real-world datasets from domains where interpretability is indispensable. We compare CRS with state-of-the-art rule-based subgroup discovery models. Results show that CRS achieved consistently competitive performance on datasets from various domains, represented by high treatment efficient frontiers.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods