CaT-GNN: Enhancing Credit Card Fraud Detection via Causal Temporal Graph Neural Networks

Credit card fraud poses a significant threat to the economy. While Graph Neural Network (GNN)-based fraud detection methods perform well, they often overlook the causal effect of a node's local structure on predictions. This paper introduces a novel method for credit card fraud detection, the \textbf{\underline{Ca}}usal \textbf{\underline{T}}emporal \textbf{\underline{G}}raph \textbf{\underline{N}}eural \textbf{N}etwork (CaT-GNN), which leverages causal invariant learning to reveal inherent correlations within transaction data. By decomposing the problem into discovery and intervention phases, CaT-GNN identifies causal nodes within the transaction graph and applies a causal mixup strategy to enhance the model's robustness and interpretability. CaT-GNN consists of two key components: Causal-Inspector and Causal-Intervener. The Causal-Inspector utilizes attention weights in the temporal attention mechanism to identify causal and environment nodes without introducing additional parameters. Subsequently, the Causal-Intervener performs a causal mixup enhancement on environment nodes based on the set of nodes. Evaluated on three datasets, including a private financial dataset and two public datasets, CaT-GNN demonstrates superior performance over existing state-of-the-art methods. Our findings highlight the potential of integrating causal reasoning with graph neural networks to improve fraud detection capabilities in financial transactions.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods