Cardiopulmonary resuscitation quality parameters from motion capture data using Differential Evolution fitting of sinusoids

Cardiopulmonary resuscitation (CPR) is alongside electrical defibrillation the most crucial countermeasure for sudden cardiac arrest, which affects thousands of individuals every year. In this paper, we present a novel approach including sinusoid models that use skeletal motion data from an RGB-D (Kinect) sensor and the Differential Evolution (DE) optimization algorithm to dynamically fit sinusoidal curves to derive frequency and depth parameters for cardiopulmonary resuscitation training. It is intended to be part of a robust and easy-to-use feedback system for CPR training, allowing its use for unsupervised training. The accuracy of this DE-based approach is evaluated in comparison with data of 28 participants recorded by a state-of-the-art training mannequin. We optimized the DE algorithm hyperparameters and showed that with these optimized parameters the frequency of the CPR is recognized with a median error of $\pm 2.9$ compressions per minute compared to the reference training mannequin.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here