Cardinality Leap for Open-Ended Evolution: Theoretical Consideration and Demonstration by "Hash Chemistry"

18 Jun 2018  ·  Hiroki Sayama ·

Open-ended evolution requires unbounded possibilities that evolving entities can explore. The cardinality of a set of those possibilities thus has a significant implication for the open-endedness of evolution. We propose that facilitating formation of higher-order entities is a generalizable, effective way to cause a "cardinality leap" in the set of possibilities that promotes open-endedness. We demonstrate this idea with a simple, proof-of-concept toy model called "Hash Chemistry" that uses a hash function as a fitness evaluator of evolving entities of any size/order. Simulation results showed that the cumulative number of unique replicating entities that appeared in evolution increased almost linearly along time without an apparent bound, demonstrating the effectiveness of the proposed cardinality leap. It was also observed that the number of individual entities involved in a single replication event gradually increased over time, indicating evolutionary appearance of higher-order entities. Moreover, these behaviors were not observed in control experiments in which fitness evaluators were replaced by random number generators. This strongly suggests that the dynamics observed in Hash Chemistry were indeed evolutionary behaviors driven by selection and adaptation taking place at multiple scales.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here